Some Relations between Action Potential and Resting Potential of the Lobster Giant Axon
نویسندگان
چکیده
Experiments were performed to determine the quantitative relation existing between action potential and resting potential of the lobster giant axon. Resting potential changes were induced by either increasing the external potassium concentration or by reducing the external calcium concentration. For either treatment the action potential amplitude is proportional to the logarithm of the resting potential minus a constant. This constant is equivalent to the minimum resting potential at which a propagated spike is possible, and is larger for depolarization in low calcium than in high potassium. Thus the change in action potential per unit change in resting potential is greater in low external calcium than in high external potassium. Analog computer solutions to the Hodgkin-Huxley equations for squid axon membrane potentials show that, if the initial conditions are properly specified, the action potential is proportional to the logarithm of the potassium potential minus a constant. The experimental results and the analog computations suggest that reducing external calcium produces changes in the invertebrate axon that cannot be accounted for solely on the basis of alterations in the potassium potential.
منابع مشابه
Effects of External Ions on Membrane Potentials of a Lobster Giant Axon
The effects of varying external concentrations of normally occurring cations on membrane potentials in the lobster giant axon have been studied and compared with data presently available from the squid giant axon. A decrease in the external concentration of sodium ions causes a reversible reduction in the amplitude of the action potential and its rate of rise. No effect on the resting potential...
متن کاملMembrane Potentials of the Lobster Giant Axon Obtained by Use of the Sucrose-Gap Technique
A method similar to the sucrose-gap technique introduced be Stäpfli is described for measuring membrane potential and current in singly lobster giant axons (diameter about 100 micra). The isotonic sucrose solution used to perfuse the gaps raises the external leakage resistance so that the recorded potential is only about 5 per cent less than the actual membrane potential. However, the resting p...
متن کاملCurrent-Voltage Relations in the Lobster Giant Axon Membrane Under Voltage Clamp Conditions
The sucrose-gap method introduced by Stämpfli provides a means for the application of a voltage clamp to the lobster giant axon, which responds to a variety of different experimental procedures in ways quite similar to those reported for the squid axon and frog node. This is particularly true for the behavior of the peak initial current. However, the steady state current shows some differences....
متن کاملCurrent-voltage relations in the isolated giant axon of the cockroach under voltage-clamp conditions.
Our understanding of the ionic exchanges taking place at the nerve membrane during electrical activity has been greatly increased by the application of the voltageclamp technique. This experimental method consists of the application of a stepwise change in potential to a given area of membrane and the simultaneous measurement of the current flow produced by this given potential gradient. The vo...
متن کاملResting and Action Potentials of the Squid Giant Axon in Vivo
Blood oxygenation and circulation were maintained in Loligo pealii for several hours by a strong flow of sea water over both gills on the open, flat mantle. Potentials were measured with a 3 M KCl-filled glass microelectrode penetrating the giant axon membrane. An hour or more after the mantle was opened, the potentials were similar to those observed in excised axons and in preparations without...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 43 شماره
صفحات -
تاریخ انتشار 1960